第一章 第一周测试题

1、 问题:1947年是谁提出了单纯形法的方法论:
选项:
A:丹捷格
B:华罗庚
C:管梅谷
D:高斯‍
答案: 【丹捷格

2、 问题:可行域是():
选项:
A:可行解的集合
B:包含最优解的区域
C:包含可行解的区域
D:包含基本解的区域
答案: 【可行解的集合

3、 问题:约束条件中常数项的百分之一百法则,对所有变化的约束条件的常数项,当其允许增加百分比与允许减少百分比之和()百分之一百时,()不变:
选项:
A:不超过 对偶价格
B:不超过 最优解
C:超过 最优解
D:超过 对偶价格
答案: 【不超过 对偶价格

4、 问题:运筹学发展史上的两大里程碑是:
选项:
A:单纯形法、计算机的普及与发展
B:单纯形法、统筹法
C:单纯形法、优选法
D:统筹法、优选法
答案: 【单纯形法、计算机的普及与发展

5、 问题:线性规划max z = 2×1 + 3x2s.t. x1 + 2×2 ≤ 65×1 + 3×2 ≤ 15×1 , x2 ≥ 0 的可行域是():
选项:
A:
B:
C:
D:可行域为空
答案: 【

6、 问题:对偶价格大于0时,约束条件的常数项增加一个单位,则():
选项:
A:求max则函数值增大
B:求max则函数值减小
C:求max则函数值不变
D:求min则函数值增大
答案: 【求max则函数值增大

7、 问题:目标函数系数的百分之一百法则,对所有变化的目标函数决策变量系数,当其允许增加百分比与允许减少百分比之和()百分之一百时,()不变:
选项:
A:不超过 最优解
B:不超过 对偶价格
C:超过 最优解
D:超过 对偶价格
答案: 【不超过 最优解

8、 问题:可行解是():
选项:
A:满足所有约束条件的解
B:满足所有约束条件的非负解
C:满足部分约束条件的解
D:满足部分约束条件的非负解
答案: 【满足所有约束条件的解

9、 问题:对偶价格小于0时,约束条件的常数项增加一个单位,则():
选项:
A:求min则函数值增大
B:求min则函数值减小
C:求max则函数值增大
D:求max则函数值不变
答案: 【求min则函数值增大

10、 问题:线性规划是目标函数和约束条件()是变量的():
选项:
A:都 线性函数
B:至少有一个 线性函数
C:至少有一个 非线性函数
D:都 非线性函数
答案: 【都 线性函数

11、 问题:等值线的斜率():
选项:
A:全部一样
B:不全一样
C:全不一样
D:不一定
答案: 【全部一样

第二周 第二周测试题

1、 问题:某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表:机器设备类型每周可用机器台时数铣床500车床350磨床150每生产一件各种新产品需要的机器台时数如下表: 机器设备类型新产品Ⅰ新产品Ⅱ新产品Ⅲ铣床846车床430磨床301三种新产品的单位利润分别为0.5元、0.2元、0.25元。若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件。试求出此时的最优解与最优值:
选项:
A:(44,10,18)最优值为28.5
B:(40,10,20)最优值为27
C:(44,15,20)最优值为30
D:(40,15,20)最优值为28
答案: 【(44,10,18)最优值为28.5

2、 问题:使用管理运筹学软件对上题求解中,发现关于铣床、车床和磨床的约束条件的对偶价格分别为0.05,0.00和0.03,说明:
选项:
A:车床加工的对偶价格为0,是因为在此生产计划下车床工时还有剩余
B:扣除成本外,若有人以低于铣床加工的对偶价格0.05来购买铣床工时,可以出售
C:若有人以高于磨床加工的对偶价格0.03来购买磨床工时,可以出售
D:车床加工的对偶价格为0,是因为在此生产计划下车床工时没有剩余
答案: 【车床加工的对偶价格为0,是因为在此生产计划下车床工时还有剩余

3、 问题:某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72,第二种有56,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位 )第一种第二种圆桌0.180.08衣柜0.090.28
选项:
A:(350,100)
B:(350,90)
C:(380,100)
D:(320,80)
答案: 【(350,100)

4、 问题:某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:(表中单位:百元) 资金单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润68 试确定上述两种货物的月供应量,使总利润达到最大,最大利润为:
选项:
A:9600
B:9800
C:1011
D:9500
答案: 【9600

5、 问题:在问题2的基础上添加产品III最少销售18件的约束条件后,其对偶价格为-0.08,说明 :
选项:
A:对偶价格为负说明该产品生产每增加一个单位,总利润会减少0.08单位
B:软件计算错误
C:对偶价格为负说明该产品生产每减少一个单位,总利润会增加0.08单位
D:对偶价格为负说明该产品不该生产
答案: 【对偶价格为负说明该产品生产每增加一个单位,总利润会减少0.08单位

6、 问题:下表给出甲、乙、丙三种食物的维生素A、B的含量及成本: 甲乙丙维生素A(单位/千克)400600400维生素B(单位/千克)800200400成本(元/千克)765营养师想购买这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时,成本最低,最低成本是:
选项:
A:58
B:55
C:52
D:56
答案: 【58

7、 问题:某咨询公司受厂商的委托对新上市的一种产品进行消费者反应的调查,该公司采用了挨户调查的方法,委托他们调查的厂商及该公司的市场研究专家对该调查提出下列几点要求:(a)必须调查2000户家庭 (b)在晚上调查的户数和白天调查的户数相等(c)至少应调查700户有孩子的家庭 (d)至少应调查450户无孩子的家庭调查一户家庭所需费用如表所示:家庭白天调查晚上调查有孩子25元30元无孩子20元24元设白天调查的有孩子的家庭的户数为x11,白天调查的无孩子的家庭的户数为x12,晚上调查的有孩子的家庭的户数为x21,晚上调查的无孩子的家庭的户数为x22,问如何安排能够使调查费用最少,建立数学模型:
选项:
A:min f =25×11+20×12+30×21+24×22 s.t. x11+x12+x21+x22≥2 000 x11+x12 =x21+x22 x11+x21≥700 x12+x22≥450 x11, x12, x21, x22≥0
B:min f =25×11+20×12+30×21+24×22 s.t. x11+x12+x21+x22≥2 000 x11+x12 =x21+x22x11+x

剩余60%内容付费后可查看
   

发表评论

电子邮件地址不会被公开。 必填项已用*标注